ANALYSIS OF NEUTRON FLUX AROUND MEDICAL ELECTRON LINEAR ACCELERATOR, PLACED IN THE ROOM RECONSTRUCTED AFTER DECOMMISSIONING OF ⁶⁰CO UNITS, USING MONTE CARLO SIMULATION

H. Brkić^a, A. Ivković^{a,b}, M. Poje^c, M. Kasabašić^{a,b}, S. Jurković^{d,e}, D. Faj^a

^aFaculty of medicine, University of Osijek, J. Huttlera 4, 3 I 000 Osijek, Croatia

^bUniversity hospital centre of Osijek, Josipa Huttlera 4, 31000 Osijek; Croatia

^cDepartment of Physics, University Josip Juraj Strossmayer, Trg Ljudevita Gaja 6, 3 I 000 Osijek; Croatia

^dUniversity Hospital Rijeka, Medical Physics Department, Krešimirova 42, Rijeka, Croatia

^eDepartment of Physics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 5 I 000 Rijeka, Croatia

Introduction - earlier research

- Increased neutron flux was measured around 18 MV
 Siemens Oncor accelerator
 - placed in the room reconstructed after decommissioning of ⁶⁰Co unit¹
- The main limitation space
 - extremely short maze were used
 - walls were strengthened by lead.

¹ Poje, Ivkovic et al. 2014

Methods - model

- Model of accelerator and its room has been built
- MCNP611 code was used to model
- 40x40 field was used
- Point in the maze was analysed
- Extension of the maze was modelled
- Addition of the lead at the walls was also modelled

Plan view

Red – lead

- Blue air
- Orange parafin
- Light orange bricks
- Green concrete

Results

Conclusions

- The flux is highest when beam is pointend toward the lead wall
- Flux drops as the maze is longer

• Results are in accordance with Kersey formula (where d_2 represents maze elongation)

$$D = \left(\frac{1}{d_1}\right)^2 \cdot \frac{S_0}{S_1} \cdot 10^{-\binom{d_2}{5}}$$

Funding

 Modelling and measuring neutron dose equivalent around medical linear accelerator of electrons